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Abitfad Some copnon h d s  d b e d  in the temp- variaiW pf @ t@qcele&c 
power, (TEF) of high-?; materigs & theoretically ,analyse$. ~n the fiist pa of the an~ysis, 
we bI&l& the dpminant effect of superconducting flumgions on m, assuming that the! 
conduckon piocess occurs in tivo dimensions. In the second pan of 'he &lysis, we show 
that, by includiig n e  selfenergy proposed in the marginal Fpn-liqmd hypothesis along with 
that arising from sup-conducting Buc@ations, one cad the @U features of the 
temperature variation of m. The magnitude of m given by the formula &rived here is also of 
the r?&t order. 

1. Ilitroduction ~ ~ 

In coiiunon with other transport properties,, the thermoelectric power ( T E ~ )  of high-G 
materials exhibits a very interesting behaviour [ 1-12], whose frlscination lieS in the fact that 
it is very different from that of ordinaj  metals. A large nuinber of high-T? ;materials have 
b k n  investigated, and, though there are differences of behaviour between different families 
of materials,' some common kends can be discerned, which we summarize'& foUows. (i) 
For a number of materials, the TEP has a positive sign, hut at the sanik time it decreases with 
increasing tkmperature. This is quite cdntrm to Mott's formula, iceording to which ~thc 
sign and dope of the thermopower should be the same. A similar aiiomaly is seen in some 
materials with negative TEP. (ii) Re&%& td the above observation is the point that the lineaf 
extrapolation of thb high-temperature @ennopower shows a large zero-mnperature intercept, 
whicIi is again cobtrary to the expectation th@ ?EP should tend to zeio as the temperature 
tends to zero (in @e absence of intervention of the superconducting transition). (iii) The TEP 
vanishes continuously as the transition temperature Tc is approached and moreover shows 
a rather broad peak a little above T,. A schematic variation tif TEP with tempeeture can be 
seen in figat= 3. 

In an.eqlier paper 1121, we have addressed the points'(ij and (ii) by cdcdlating the 
%ermoelFnic pow? using the hypothesis .of marginal Fermi-liquid theory. Tke formula 
obtained there provides a fair account of the behaviour in the temperature range from a 
few degrees above Tc to about room temperature, with reasonable parameter values. The 
purpose of this paper is td address point (iii) above and to derive a comprehensive formula 
that will enable us to understand all the above-mentioned features. The important point 
to which we wish to draw attention is that the drop of thermopower to zero value at Tc 
invariably occurs over a finite temperature range, and this implies that the process driving 
TEP to zero value sets in somewhat above T,. This process in all likelihood involves the 
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precursor superconducting fluctuations, whose importance in these systems can be argued 
for in other ways as mentioned later in the paper. Thus we believe that the observed broad 
peak simply results because the superconducting fluctuations above Tc cause a turn-around in 
the rising (falling) trend in the hole (electron) superconducting temperature somewhat above 
TE. While at this stage it is perhaps too ambitious to present a single theoretical scheme 
that explains rrp in the entire temperature range, we calculate the dominant effects of 
pairing fluctuations on TEP for a simple metal, and then include the normal-state anomalous 
behaviour by incorporating the self-energy proposed in the marginal Fermi-liquid hypothesis 
[13]. In view of the fact that knowledge of high-T, materials is not yet sufficient to be able 
to assert a minimal microscopic model, the scope of our considerations is somewhat limited. 
We have tried to examine the consequences of the abovementioned physical ideas in the 
simplest possible theoretical scheme and then to compare such results with the experimental 
results to extract certain parameters of theoretical interest. We hope that the consistency 
checks on these parameters will provide clues as to the key elements of the correct model. 

One other possible explanation of the precursor peak that has been often mentioned in 
the literature is that it is due to a phonon-drag effect. In simple metals, similar broad peaks 
are known to occur around a temperature TD/~,  where TO is the Debye temperature. A 
typical value of TD for compounds of the family YBazCu307 is 500 K, SO the observed 
peak is in the right range. However, there is experimental evidence that discounts this 
explanation. Radha!aishnan et al [14] report TEP measurements on a series of compounds 
YBaz(C~-,Zn,)30~-~. By zinc substitution for copper, Tc varies from 90 to 50 K, while 
To is not expected to alter much, yet the TEP peak is still found to occur close to Tc. 

The superconducting fluctuations are clearly important for high-T, materials for the 
following two reasons: (i) the conduction process is two dimensional, and (ii) the coherence 
length of these superconductors is quite small. The theory for the effect of superconducting 
fluctuations has been studied for a long time, starting with the pioneering calculations 
of Aslamosov and Larkin [15]. In principle, one should generalize these calculations 
for the appropriate Kubo formulae for thermopower. However, such a fully fledged 
calculation is very complicated. So, in this paper we content ourselves with a microscopic 
calculation, which we believe incorporates the most significant effect of superconducting 
fluctuations on TEP, which drives it to zero value continuously as T + Tc. This effect is 
essentially a one-particle effect arising due to velocity and density-of-states renormalization 
by superconducting fluctuations. Through in our later discussion we employ the Kubo 
formula, the main physical point can be easily discussed by considering the Mott formula, 
which is 

where U ( € )  is the conductivity regarded as a function of Fermi energy and the derivative is 
taken at the Fermi energy cp. Further, for simple metals 

U(€) = (e2/3ti)p(e)v2(c)r(~) (1.2) 

where P(E), U(€) and T ( E )  denote singleparticle density of states, velocity and mean 
collision time, respectively. In the normal state P ( E )  0: E''', while in the superconducting 
state P ( E )  is zero within a gap around EF. So, clearly, as the transition temperature is 
approached from above, the superconducting fluctuations are expected to make p(e) and 
V ( E )  strong functions of temperature. The effect of this renormalization exhibits itself 
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through the energy derivative in equation (1.1). As first noted by Opsal ef al [16], the 
effect of velocity renormalization shows up in thermopower, in contrast with conductivity, 
where it gets cancelled out. 

Our theory is based on incorporation of superconducting fluctuations in the single- 
particle propagator G@, E )  for the quasiparticles of the system. For our purpose, the 
actual mechanism that gives rise to pairing fluctuations is not very important, as the result 
obtained depends upon the anomalous (order-parameter) susceptibility, whose form (apart 
from the values of the parameters) is quite general. So, while we do the explicit calculation 
in the simple interaction model of Bardeen, Cooper and Schrieffer (BCS), we believe that 
the results obtained are of wider generality in the sense that, instead of obtaining the 
parameters contained in the final formula from the model, one can obtain them directly 
from the experimentally measurable quantities. 

The remainder of the paper is organized as follows. In section 2, we describe the 
basic scheme of the calculation of thermopower in terms of Kubo formulae and give 
the main approximation used in the calculation. Section 3 describes our scheme for 
incorporating superconducting fluctuations in the transport coefficients. Here we essentially 
calculate the single-particle self-energy, which is then used in the formula of section 2 
to obtain the thermopower. The vertex corrections are omitted completely. Finally, in 
section 4, we describe a way of incorporating the normal-state correlations by employing 
the marginal Fermi-liquid hypothesis. The paper is concluded in section 5 with some 
remarks summarizing the results and indications for future work. 

2. Theoretical formalism 

In this section our goal is to obtain a formula for TEP that is suitable for the purpose of 
this analysis. The analysis presented involves several approximations, as the idea is to 
obtain what we regard as the main and general features of the TEP behaviour. The diffusion 
component of thermopower, Sd, with which we are concerned here can be expressed as a 
ratio of two coefficients obtained from Kubo-type correlators as follows [17]: 

s d  = -(1/T)(Lll/LlZ) (2.1) 

where L11 and ,512 are obtained from the cment-current correlators of the form 

where zn denotes the Matsubara frequency iir(2n+ l)/p, d the dimensionality, the volume 
and Je and JQ denote respectively the electric current and the heat current operators. The 
coefficients L11 and ,512 are obtained by the following limiting procedure [17]: 

L = l i i  L(z .  --f o + is). (2.4) 
0-0 
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The elechic current operator in terms of creation and annihilation operators cLs and ck, is 
given by 

(2.5) 

where ,m* stands for the effective mass of the carrier, k for its wavevecfor and s for its 
spin. For the heat current current operator JQ we use the truncated form 

where ( k  = h2k2/2m' - EF. There are other contributions to JQ [17,18], but we do not 
include them, as expression (2.6) seems adequate for the qualitative effects being considered 
here. Substituting equations (2.2) and (2.3) and following the known procedure [17], one 
arrives at the expressions for L11 and LIZ given below: 

%'e2 1 de 
dm*2 S2 L11 = - - k2 / z;; (- y) G,(k, e)Ga(k, E) y ( k ,  E - is, E + is) (2.7) 

LIZ = -- %'e2 dm*2 ~ 1 T C k . k ' / E  ( - ~ ) G , ( k , ~ ) G , ( k , ~ ) y ( k , ~ - i s , € + i s ) .  (2.8) de 

Here ~ o ( E )  is the Fermi function, y is related to the vertex function, d is the dimensionality 
of the system, and G, and G, are respectively the retarded and advanced singleparticle 
propagators, which can be written as 

= [ E  - (k - C ( k ,  E f is)]-' (2.9) 

where the + (-) sign goes with r (a). Further, we will write C in terms of its real and 
imaginary parts, 

C ( k ,  E zk is) = &(k, E) F i r (k ,  E ) .  (2.10) 

For evaluation of equations (2.7) and (2.8). we shall employ the following drastic 
approximations. First, we neglect the vertex corrections by setting y ( k ,  E - 3 ,  E + is) 
to be unity. Secondly, we replace r ( k , e )  by a constant value r(kF,O). Finally, we 
assume that the k dependence of C comes only through c k ,  as will be shown in later 
sections. The neglect of vertex corrections is not justified in most situations. For example, 
in the calculation of impurity resistance it replaces the single-particle relaxation time by 
transport relaxation time. Furthermore, as shown by Aslamosov and Larkin [15], the vertex 
corrections play a key role in calculating conductivity fluctuations. However, for TEP we 
find that the leading effect already emerges from the single-particle self-energy, and since 
relaxation time cancels out of the TEP formula, its corrections are not as significant. The 
neglect of the energy dependence of r (k ,  E) i s  not correct in general, but is justified from 
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the explicit expression in this case. With these approximations, equations (2.7) and (2.8) 
can be written as 

where p&) is the density of states in d dimensions. Further evaluation of these expressiohs 
is done by working to leading order in I?(&, 0), which enables us to replace the Lorentzian 
by &-functions. This yields 

where 

and 

Similarly 

(2.13) 

(2.1&) 

(2.15) 

Equations (2.13) and (2.16) are now evaluated in the degeneracy limit by resorting to 
Sommerfeld expansion. For conductivity, i.e. L I Z ,  one obtains a contribution to the leading 
order, i.e. 

From equation (2.15) 

(2.17) 
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Substituting equation (2.18) into equation (2.17), one finds 

(2.20) 

As is well known, in the evaluation of L I Z  one gets a zero contribution from the leading 
order of the Sommerfeld expansion. Thus expanding pdk2 about the Fermi energy, we 
derive the following expression for the parabolic energy band 

(2.21) 

From equations (2.20), (2.21) and (2.18), we finally arrive at the following expression for 
Sd: 

(2.22) 

This expression will be used in the following sections. 

3. Superconducting fluctuations 

In this section we evaluate the contribution to singleparticle self-energy arising due to 
superconducting fluctuations. We perform the calculation in the simple interaction model of 
BCS (see e.g. [19]). But we believe that the results have a wider validity, as what is basically 
involved is the order parameter or anomalous susceptibility of the normal state, and this 
susceptibility has a general form in which only certain parameters have model-dependent 
values. We consider a model in which quasiparticles with energy-momentum (&, k) (where 
t k  is measured with respect to Fermi energy CF) interact attractively with a strength A within 
the ener,T range < hm.  We further assume that the quasiparticles also suffer elastic 
scattering from impurities, which leads to a liietime T for the particles at the Fermi surface. 
The simplest way to include the effect of virtual pairing is to consider the set of diagrams 
for self-energy shown in figure 1. This set of diagrams incorporates the instability of the 
normal state to pairing as it occurs in the vertex function of the particle-particle channel. 
These can also be thought of in terms of the random-phase approximation for the anomalous 
susceptibility whose divergence signals the onset of superconductivity. 

The self-energy corresponding to these diagrams is given by 

1 
EC(p,zn) = - ~ ~ ~ ( ~ K , K I ~ - P . K I ~ - P ) ~ ( K - P ~ Z - ~ Z ~ )  (3.1) 

bQ K.r 

where g(p, z )  denotes the unperturbed singleparticle propagator (including impurity 
scattering) given by 

g(q, z) = tz - tq + i~;'(sgnt~h)]-' (3.2) 
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F i  1. The diagrammatic series for Z(p, L) and the representation for the integral equations 
for t (K ,  2). In the figure K stands for (K,z) .  

where rq is the lifetime of the state due to scattering from impurities and t denotes the 
ladder sum of repeated particle-particle scattering shown in figure 1. For the present case, 
the t-matrix equation and its solution are given as I191 

t ( z , K , p , p )  =A-- ~g(K/2-p“,z-z”)g(K/2+p“,zN)t(z, K , p ” , p ’ )  
A 

BQ p”,r” 

= A/11 + AxdK, z)l (3.3) 

where 

- U  - ~O(~)I~(K/~+P,Z--)~~(K/~-P,E)I. (3.4) 

Note that in this model t depends only on z and K, which correspond to the total frequency 
and momentum of the paaicle pair. Now recall that t ( z  = 0 , K  = 0) exhibits the 
superconducting instability, as given by [19] 

that is 

, ’ (3.5) 
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where y is the Euler constant and in the small 5-l limit 

kBT, = @ W D Y / ~ )  eXP(-[l~lPd(o)l-'1 (3.7) 

which is the well known BCS expression for the transition temperature. The main physical 
consequences of the analysis clearly come from the small-K behaviour of t (w,  K). In this 
limit ,ya(w, K )  can be evaluated as 

x&, K )  = p(O)[ln(PoDy/j-d + i(n/8)Pw - iK2V:r21 (3.8) 

which leads to 

I 

p(O)@n(T/T,) + K 2 t 2  - ixflw/8] 
t(o, K )  = - (3.9) 

with t2 = Vz'~2'~/6. 
The frequency sum in equation (3.1) can be easily done to yield 

X(p,%) = / ~ t f o ( ~ ) r I z . + € , K ) ~ g ( X - p , ~ ) - f s ( ~ )  

xImt(c,K)g@ -z.,K-p)l (3.10) 

where f ~ ( 6 )  denotes the Bose-Einstein factor (eof - l)-I. 
The first term of this expression corresponds to the physical effect that we discussed 

earlier, that is, it describes the effect that near T, the quasiparticle energy gets renormalized 
as the quasiparticle (hole) free state gets strongly mixed with a state in which it is paired 
with another particle (hole) from the Fermi sea. The second part containing the Bose factor 
is an additional effect of superconducting fluctuations. In two dimensions, the second factor 
gives rise to a divergence, which corresponds to absence of superconducting ordering in 
accordance with the Mermin-Wagner theorem. In the present context such a divergence 
has to be suppressed owing to the overall three-dimensional nature of the problem, so we 
believe this term to be unimportant apart from an overall shift of the chemical potential. 

The evaluation of the first term in the self-energy is straightforward. Substituting for t 
yields 

(3.11) 

where p stands for ln(T/T,) N (T - T,)/T,. Performing the momentum sum in two 
dimensions, keeping in mind that the important contributions come from K N 0, which 
allows us to approximate t ~ - ~  2: tp, we obtain the leading contributions for the real and 
imaginary p m  of the seIf-energy to be 
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where Km denotes the upper lit for the K sum. Note that near the Fermi level r N r-l, 

which justifies ignoring its momentum-energy dependence in the formula for TEP. We can 
now use equation (3.12) in the formula for TEP given in equation (2.22). Noting that the 
derivative of with respect to E vanishes at E = 0, we obtain the following formula: 

(3.14) 

where A$ =h2/(2m*kBT). The most important feature of this formula is that it shows how 
the superconducting fluctuations drive the thermoelectric power to zero value at Tc. The 
temperature range over which this happens is clearly decided by the coherence length C. 
The parameters involved in the formula are Tc, m*, CF and e. Using typical values of these 
parameters, i.e. T, N 110 K, m* = 2m, CF = 40000 K and = 20 A, a plot of the formula 
given in equation (3.14) is shown as curve (a) in figure 2. 

8.0 1 

Figwe 2. (a) The temperahie variations of t h m p o w e r  according to equarion (3.14); @) the 
same variation acmrding to equation (4.3); (c) the vki?tion when we include only the marginal 
Fermi-liquid self-energy: The p-eters used for these plots are: T, = 110 K, m* = 2m, 
E R  = 40000 K, $ = 20 A. A ='2 and hoe = 600 K. 

, 

4. Normal-state correlations 

In the above derivation we have considered superconducting fluctuations within the standard 
Fermi-liquid description. This is not quite adequate to understand the typical behaviour of 
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figure 3. So we clearly need to include correlations that are responsible for anomalies in 
various normal-state transport properties. In the absence of any first-principles description 
of the normal-state properties, we have chosen to employ the marginal Fermi-liquid (m) 
hypothesis, which has been used with some success to understand a variety of normal- 
state properties [13]. The MFL hypothesis consists of assuming the following form of the 
self-energy : 

(4.la) 

(4.lb) 

where A is a dimensionless coupling constant and hoc is a cut-off frequency such that the 
above expression is valid only for E e Am,. Note that this self-energy does not depend 
upon the momentum variable. So we propose that, to obtain a better account of normal-state 
behaviour, we include equation (4.1) in the self-energy of our propagator G(k ,  E) and write 

x ( k  6) = xMFL(c) + xSCF(&s €1 (4.2) 

where ES&~,V.E) is given by equation (3.10). This proposal amounts to perturbative 
inclusion of a process causing superconducting fluctuations and a process leading to MFL 
behaviour in the Fermi-liquid theory. If we now use equation (4.2) in the fonnula for 
Sd, i.e. equation (2.22), one notes that C M ~  enters only in the numerator and thus simply 
contributes a factor multiplying the expression contained in equation (3.14). The final 
resulting expression for Sd thus becomes 

(4.3) 

In our earlier work [12] we had considered the effect of MFL correlations only and 
found a fairly good quantitative agreement with thennopower data in some bismuth-based 
superconductors. There we obtained the values of parameters like A, hoc and EF using fits to 
data on conductivity as well as on thennopower. Using typical values A = 2, hw, = 600 K 
and EF = 40000 K, we exhibit a plot of equation (4.3) as curve (b) in figure 2. To make 
the role of various terms explicit, we have also included the plot (as curye (c) in figure 2) 
in which only MFL correlations are included. Since a variety of data has been reported in 
the literature, which ranges from exhibiting a rather broad hump to a sharp peak close to 
T,, we point out that a small variation in parameters like A and hoc can allow this range 
of behaviour. Figure 3 shows plots showing three such choices. It should be remarked that 
the value of the cut-off energy that is required to obtain the observed trends is 20% lower 
than the authors of the MFL hypothesis expect it to be [ZO]. Further, it should be no 

magnitude variations can be easily accommodated with small variations in parameters qke 
EF, A and hw,. 

that the magnitudes obtained in our formula are indeed of the right order, and the obs A 

5. Conclusions 

We see from the plots of figures 2 and 3 that some of the main features of thennopower 
data on a number of high-% superconductors can be understood on the basis of the 



Thermoelectric power of high-T, superconductors 8287 

formula derived in this paper. In spite of the simplifications and approximations made 
in the derivation of the formula for Sd, we feel that the agreement with the experiments 
at a quantitative level suggests that the superconducting fluctuations due to reduced 
dimensionality and small coherence length do indeed play a role in the continuous vanishing 
of TEP at Tc, whereas the large departure from the Fermi-liquid-lie behaviour at higher 
temperatures seems to require a drastic proposal like the MFL hypothesis. This approach 
can be refined and extended. In particular, in many compounds the thermopower changes 
sign at higher temperatures. This is conjectured to be due to conduction in two or more 
bands. We propose to examine this aspect in future. 
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