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Therimoelectric power of high-T, superconductors‘
superconductmg ﬂuctuatmns and the margmal Ferlm-llqmd
hypothes:s

Dee'pak Kumar
School of Physical Sciences, Jawaharlal Nehru University, New Deihi 110067, India

" Received 9 December 1992,i in finaf form 2 Iuly 1993

- Absifdct. Some common trends observed in the temperature variafioi pf the thennoelecmc
power (ep) of high- I:, materials are theoretically analysed. In the fifst pait of the anaIysns,

“we calculate the dominant &fféct of superconducl:mg fluctuations on TEP, assuming that the
condiiction pricess occurs in fwo dimensions, In the second part of the afialysis, we show
that, by including the self-energy proposed in the marginal Fermd-liqitid hypothesxs along with

" that arising from superconducting fuctuations; one can ynderstand the main features of the
temperature variation of Tep. The magmtude of TEP giveil by the formula derived here is also of
the nght order.

L Iﬂtroducﬁoﬁ _

In common with other transport propemes the thermoelectric power (TEP) of hlgh—
maierials exhibits a very intéresting behaviour [1-12], whose fiscination liés in the fact that
it is' very different from that of ordinary metals. A large humber of high-T; materials have
bien investigated, and, though there are differences of behaviour between dlfferent families
of materfals, some common trends can be discerned, which we summarize ds follows 3]
For a number of materials, the TEP has a positive sign, but at the samie time it déereases with
increasing témperature. This is quite cotrary to Mott’s. formula, #ccording to which the
sign and slope of the thermopower should be the same. A similar afiomaly is seen in sofhg
materials with negative TEP. (i) Related to the above obseryation is thé point that the linear
extrapolation of the hlgh-temperaturc t;_l_ennopower shows a large zero-temperature intercept,
whicht is again coitrary to the expectation that TEP should tend to zero as the temperature
tends to zero (in the absence of intervention of the superconducﬂng transition). (iil) The TEP
vanishes continuously as the transition temperature T, is approached and mereover shows

-arathér broad peak a little above T.. A schematic variation of TEP with temperature can be
seen in ﬁgure 3.

In an.earlier ‘paper [12] we have addressed the pomts (1) and (ii) by ca]culatmg the
thermoelectric power using the hypothesis -of marginal Ferrm—hqmd theory. The formula
obtained there provides a fair account of the behaviour in the temperature range from a
few degrees above T; to about room temperature, with reasonable parameter values. The
purpose of this paper is 1o address point (iii) above and to derive a comprehensive formula
that will enable us to understand all the above-mentioned features. The important point -
to which we wish 0 draw attentiorn is. that the drop of thermopower to-Zero value at T,
invariably occurs over a finite temperature range, and this implies that the process driving
TEP to zero value sets in-somewhat above T.. This process in all likelihood involves the
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precursor superconducting fluctuations, whose importance in these systems can be argued
for in other ways as mentioned later in the paper. Thus we believe that the observed broad
peak simply results because the superconducting fluctnations above 7;; cause a turn-around in
the rising (falling) trend in the hole (electron} superconducting temperature somewhat above
T.. While at this stage it is perhaps too ambitious to present a single theoretical scheme
that explains TEP in the entire temperature range, we calculate the dominant effects of
pairing fluctuations on TEP for a simple metal, and then include the normal-state anomalous
behaviour by incorporating the self-energy proposed in the marginal Fermi-liquid hypothesis
[13]. In view of the fact that knowledge of high-T; materials is not yet sufficient to be able
to assert a minimal microscopic model, the scope of our considerations is somewhat limited.
We have tried to examine the consequences of the above-mentioned physical ideas in the
simplest possible theoretical scheme and then to compare such results with the experimental
results to extract certain parameters of theoretical interest. We hope that the consistency
checks on these parameters will provide clues as to the key elements of the correct model.

One other possible explanation of the precursor peak that has been often mentioned in
the literature is that it is due to a phonon-drag effect. In simple metals, similar broad peaks
are known to occur around a temperature I1,/5, where Tp is the Debye temperature. A
typical value of Tp for compounds of the family YBayCuz Q5 is 500 K, so the observed
peak is in the right range. However, there is experimental evidence that discounts this
explanation. Radhakrishnan et ol [14] report TEP measurements on a series of compounds
YBay(Cu;_yZny);07_x. By zinc substitution for copper, T; varies from 90 to 50 K, while
Tp is not expected to alter much, yet the TEP peak is still found to occur close to T,.

The superconducting fluctvations are clearly important for high-7. ‘materials for the
following two reasons: (i) the conduction process is two dimensional, and (it) the coherence
length of these superconductors is quite small. The theory for the effect of superconducting
fluctuations has been studied for a long time, starting with the piomeering calculations
of Aslamosov and Larkin [15]. In principle, one should generalize these calculations
for the appropriate Kubo formulae for thermopower. However, such a fully fledged
calculation is very complicated. So, in this paper we content ourselves with a microscopic
calculation, which we believe incorporates the most significant effect of superconducting
fluctnations on TEP, which drives it to zero value continuously as T — T,. This effect is
essentially a one-particle effect arising due to velocity and density-of-states renormalization
by superconducting fluctuations. Through in our later discussion we employ the Kubo
formula, the main physical point can be easily discussed by considering the Mott formula,
which is '

oo T2RET (31110'(6) : )
3ecg 3lne /. _

where o{€) is the conductivity regarded as a function of Ferrai energy and the derivative is
taken at the Fermi energy ep. Further, for simple metals

o(€) = (€/3n)p(e) (e)T(€) Y

where p(e), v(¢) and 7(e) denote single-particle density of states, velocity and mean
collision time, respectively. In the normal state p(e) o €'/, while in the superconducting
state p(€} is zero within a gap around €. So, clearly, as the transition temperature is
approached from above, the superconducting fluctuations are expected to make p(¢) and
v(e) strong functions of temperature. The effect of this renormalization exhibits itself
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through the energy derivative in equation (1.1). As first noted by Opsal et al [16], the
effect of velocity renormalization shows up in thermopower, in contrast with conductivity,
where it gets cancelled out.

. Qur theory is based on incorporation of superCOnducnng fluctnations in the single-
particle propagator G(p,€) for the quasiparticles of the system. For our purpose, the
actual mechanism that gives rise to pairing fiuctuations is not very important, as the result
obtained depends upon the anomalous (order-parameter) susceptibility, whose form (apart
from the values of the parameters) is quite general. So, while we do the explicit calculation
in the simple interaction model of Bardeen, Cooper and Schrieffer (BCS), we believe that
the results obtained are of wider generality in the sense that, instead of obtaining the
- parameters contained in the final formula from the model, one can obta.m thcm directly
from the experimentally measurable quantities.

The remainder of the paper is organized as follows. In section 2, we describe the
basic scheme of the calculation of thermopower in terms of Kubo formulae and give
the main approximation used in the calculation. Section 3 describes our scheme for .
incorporating superconducting fluctuations in the transport coefficients. Here we essentially
calculate the single-particle self-energy, which is then used in the formula of section 2
to obtain the thermopower. The vertex corrections-are omitted completely. Finally, in
section 4, we describe a way of incorporating the normal-state correlations by employing
the .marginal Fermi-liquid hypothesis. The paper is concluded in secuon 5 with some
remarks summarizing the resuolts and indications for futare work.

2. Theoretical formalism

In this section our goal is to obtain a formula for TEP that is suitable for the purpose of
this analysis. The analysis presented involves several approximations, as the idea is to
obtain what we regard as the main and general features of the TEP behaviour. The diffusion
- component of thermopower, $4, with which we are concerned here can be expressed as a
ratio of two coefficients obtained from Kubo-type correlators as follows [17]:

 Sa=—(1/T)L1/Ly) - o @.1)

where L1; and Ly are obtained from the current-current correlators of the form.

@) = gooe [ e emGora@- Loy @
1 8 - o
La@) =5 [ 4 exp@OT @ - 2O 3

- where z, denotes the Matsubara frequency ir(2n+1)/8, d-the dimensionality, £2 the volume
and J, and Jo denote respectively the electric current and the heat current dperators. The
coefﬁcmnts Ln and Lu are ohtamed by the followmg Iumtmg procedure [17]:

L=IimL(z,l—>cu'+i8).' S ' T (24
-0 .
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The electric current operator in terms of creation and annihilation operators c,ts and cgs is
given by

Je-eZ ckscks @S

where m* stands for the effective mass of the carrier, k for its wavevector and s for its
spin. For the heat current current operator Jg we use the truncated form

Rk
Jo=ey $Ekc};cb (2.6)
k,s

where & = A%k%/2m* — ez. There are other contributions to Jo [17,18], but we do not
include them, as expression (2.6) seems adequate for the qualitative effects being considered
here. Substituting equations (2.2) and (2.3) and following the known procedure [17], one
arrives at the expressions for Ly, and Lis given below: '

22
Ly = Zﬁ fz :2 Z f ( de(E)) Gelk, )Go(k, )y (k, € — 8, € +i8) @7

2,2 l '
L= ?; fz é Zf f & (— d}:;fe)) Gilk, €)Galk, )y (k. € —id, e +10).  (28)

Here fy(e) is the Fermi function, y is related to the vertex function, d is the dimensionality
of the system, and G, and G, are respectively the retarded and advanced single-particle
propagators, which can be written as ,

G = [€ — & ~ T(k, € £i8)]™ | O (29)

where the 4+ (—) sign goes w1th r (a). Further, we will write ¥ in terms of its real and
imaginary parts,

2k, € £ i8) = Zg(k, €) Fil'(k, €). (2.10)

For evaluation of equations (2.7) and (2.8), we shall employ the following drastic
approximations. First, we neglect the vertex corrections by setting y(k, ¢ — i, € 4 i6)
to be unity. Secondly, we replace I'(k, €} by a constant value I'(kz, 0). Finally, we
assume that the k& dependence of £ comes only through &, as will be shown in later
sections. The neglect of vertex corrections is not justified in most situations. For example,
in the calculation of impurity resistance it replaces the single-particle relaxation time by
transport relaxation time. Furthermore, as shown by Aslamosov and Larkin [15], the vertex
corrections play a key role ih calculatmg conductivity fluctuations. However, for TEP we
find that the leading effect already emerges from the single- particle self-energy, and since
relaxation time cancels out of the TEP formula, its corrections are not as significant. The
neglect of the energy dependence of I'(k, €) is not correct in general, but is justified from



Thermoelectric power of high-T,. superconductors 8281

the explicit expression in this case. With these approxunatlons, equations (2. b)) and (2 8)
can be written as - : .

. - 2 £ dfg r - o 115

Ly = 2 Sl fdék paEk f2r ( ) [E“& — ER(’g'k,G)]2+1"2 (2:11)
_ o2 2 de dfo T : ' ‘

Le=o5r fdé'k Pa )k Ekf o= ( ) [ - TnGr OF £ T2 - (212)

where pa(&) is the density of states in d dunenswns Funher evaluation of these expressions
is done by working to leading order i in ['(§,0), which enables us to replace t the Lorentzian
by 6-funct10ns This yields ,

2,2 2 .
_ 2% fd§ palErk ( aﬁ’) 8(e — & —Ek(’g'k,e))

dm* T(&) 3
_ pd(w( afo) 1 ' o
~am *Zf e \TaE) T-5L,60 @19
there - -
Sro(es Er) = 3Tk, Ei)/IE: o e
and
By =&+ TR (&, E)- S o (215)
Similarly 7
RS [ pd&)E (O L
le-dm*zfd&'k I ( aEk) LG (2.16)

_ E(]uatioﬁs (2.13) and (2.16) aré now evalvated in the degeneracy limit by resorting to
Sommerfeld expansion. For conductlwty, i.e. L, one obtains a contnbm:lon to the leading
order, ie. .

e WO 1 (9 o
Li = I F 1350, 0) (3Ek) o , (2.17)

From equation (2.15) |
QEL/08, = [1 + Tg, (&x, ER)/[1 — Dy (&s, E)] | (2.18)

where

Shi(Eer Bi) = 05r(Ees Ex)/0E. (2.19)
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Substituting equation (2.18) into equation (2.17), ore finds

ne? 1

L= r T eL,0.0°

2.20)

As is well known, in the evaluation of Lis one gets a zero contribution from the leading
order of the Sommerfeld expansion. Thus expanding pz&> about the Fermi energy, we
derive the following expression for the parabolic energy band:

_ 2e _ ifﬂ i d&./dE,
Lip= 2= f dE; ( - Ek) &0a(0)e (1 o ac) TRETD

_ ne 7ET? 1 8. \*
T m*T 3er 14 35,(0,0) \8E:/y

(2.21)

From equations (2.20}, (2.21) and (2.18), we finally arrive at the following expression for
Sd:

7kp (kT 1—}3;12(0,0))2
= AL N el “ A\l I 222
Sa=3, ( e )(1+2§,(o,0) @22)

This expression will be used in the following sections.

3. Superconducting fluctuations

In this section we evaluate the contribution to single-particle self-energy arising due to
superconducting fluctuations. We perform the calculation in the simple interaction model of
BCS (see e.g. [19]). But we believe that the results have a wider validity, as what is basically
involved is the order parameter or anomalous susceptibility of the normal state, and this
susceptibility has a general form in which only certain parameters have model-dependent
values. We consider a model in which quasiparticles with energy—momentum. (£, k) (where
£, is measured with respect to Fermi energy ¢g) interact attractively with a strength A within
the energy range {§;| < fiwp. We further assume that the quasiparticles also suffer elastic
scattering from impurities, which leads to a lifetime 7 for the particles at the Fermi surface.
The simplest way to include the effect of virtual pairing is to consider the set of diagrams
for self-energy shown in figure 1. This set of diagrams incorporates the instability of the
normal state to pairing as it occurs in the vertex function of the particle—particle channel.
These can also be thought of in terms of the random-phase approximation for the anomalous
susceptibility whose divergence signals the onset of superconductivity.
The self-energy corresponding to these diagrams is given by

1 _
5@ 2) = 55 > e K, K/2—p, K[2-p)g(K —p.z~2z) (G
K.z

where g(q,z) denotes the unperturbed single-particle propagator (including impurity
scattering) given by

8(q.2) = [z — & +ir; (sgn )] (3.2)
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' K, K_ K
2772 q 5P

Figure 1. The diagrammatic series for Z(p, ) and the representatlon for the mteg'ral equations
for (&, z). In the figure K sumds for (K z). )

where t, is the lifetime of the state due to scattering from impurities and t denotes the
- ladder sum of repeated particle-particle scattering shown in figure 1. For the present case,
the t-matnx equation and its solution are given as [19] .

t(z, K,p,p)=2~— Es_z ): gK/2—p", 2~ z”)g(K/2+p” Mz, K, p",p)-
2" ) . o R .
L= l/[l + JLX_a(K, z)] ’ ’ (3.3)
where . -

(K, 2) =5 m o= D 8CK/2 - P’z z")g(K/z +p",7)
P

de
== — - —¢)Im
5 Zf o {foCE)g(K/Z p.z—€)Img(K/2+p,€)
—[1— fole)lg(K/2+p, z—€) Img(K/2 - P, o). - G4
Note that in this model t depends only on z and K which coxre3pond to the total frequency

and momentum of the particle pair. Now recall that t(z = = Q) exhibits the
superconducting instability, as given by [19] '

o o
0,0) = —— I S @5
10, = Ao W Bany L+ 1/ Gl T} 35
thatié , - .
HO,0) = —— 68

pa(€p) In(T/ Tp)
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where y is the Euler constant and in the small z—! limit

ke T = (fiwpy /) exp{—[1A0(0)] "} (3.7
which is the well known BCS expression for the transition temperature. The main physical

consequences of the analysis clearly come from the small-K behaviour of #{w, K). In this
limit x,(e, K) can be evaluated as

Xalw, K) = pO)[In(Beny /7) + i(x/8)Beo — tKVEY (3.8}

which leads to

1
Mo B = O/ T + K38 — inparfS] 9
with £2 = V27%/6.
The frequency sum in equation (3.1} can be easily done to yield
de
30.2) = [ LUt + e K)InglK — p.6) = fol®
x Imt(e, K)gle — z,, K — p)] : (3.1_0)

where fz(e) denotes the Bose—Einstein factor (ef¢ — 1)1,

The first term of this expression corresponds to the physical effect that we discussed
earlier, that is, it describes the effect that near T the quasiparticle energy gets renormalized
as the quasiparticle (hole) free state gets strongly mixed with a state in which it is paired
with another particle (hole) from the Fermi sea. The second part containing the Bose factor
is an additional effect of superconducting fluctuations. In two dimensions, the second factor
gives rise to a divergence, which comresponds to absence of superconducting ordering in
accordance with the Mermin—Wagner theorem. In the present context such a divergence
has to be suppressed owing to the overall three-dimensional nature of the problem, so we
believe this term to be unimportant apart from an overall shift of the chemical potential.

The evaluation of the first term in the seif-energy is siraightforward. Substituting for ¢
yields

1 . 1
2p, B = ——n - .
®.B) =~ 555 2 o) (e — g BB T e

(3.11)

where g stands for In{T/T;}) =~ (T — T;}/T,. Performing the momentum sum in two
dimensions, keeping in mind that the important contributions come from K =~ 0, which
allows us to approximate £x_, = &5, we obtain the leading contnbutmns for the real and
imaginary parts of the self-energy to be

2 E 2
T, B) 2 o O ("” +[(”’Z;;g +§””) G.12)
I, B) ~ f(é’)[ ’(—8’“‘—)]+r‘ (3.13)
T T ssz(O) 0tr TB(E + &) e '
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where K, denotes the upper limit for the K sum. Note that near the Fermi level T ~ ¢~1,
which justifies ignoring its momentum-energy dependence in the formula for TEP. We can
now use equation (3.12) in the formula for TEP given in equation (2.22). Noting that the
derivative of Zg with respect to £ vanishes at £ = (), we obtain the following formula:

- _ J'rsz ..—kBT- 1 ) 7 T
= 3e . ( ) [1- (AT/4J':§2)111,LL]2 (3.14) .

where A2 = ﬁz / (Zm*kB T). The most lmportant feature of this formula is that it shows how
the superconductmg fluctuations drive the thermoelectric power to zero value at 7. The
temperature range over which this happens is cleaIIy decided by the coherence length &,
The parameters involved in the formula are T, m*, € and £. Using typical values of these
parameters ie T, > 110K, m* =2m, ¢g = 400()0 K and § =20 A, a plot of the formula
glven in equauon (3. 14) is shown as curve (a) in figure 2. .

.80
70
8.0
5.0

40

3.0

: S;(}JVIK)

2.0

1.0

0O 1 B | 71 ] 7 1 | I I I ]
o 40. 80 120 160 200 240 280 320 360
: TK)-

Flgl.ll'E 2.’ (a) The temperature variations of thennopower according to equatlon (3 14); {b) the
same variation according to equation (4.3); (c} the variation when we include only the marginal
Fermi-liquid self-energy. The parameters used for these plots are: T = 110 K, m* = 2m,
€r = 40000 K, £ =20 A, A =2 and Aoy, = 600 K. :

4. Normal-state correlations

In the above derivation we have considered superconducting fluctuations within the standard
Fermi-liquid description. This is not quite adequate to understand the typical behaviour of
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figure 3. So we clearly need to include correlations that are responsible for anomalies in
various normai-state transport properties. In the absence of any first-principles description
of the normal-state properties, we have chosen to employ the marginal Fermi-liquid (MFL)
hypothesis, which has been used with some success to understand a variety of normal-
state properties [13]. The MFL hypothesis consists of assuming the following form of the
self-energy:

vk, €) = Aleln(x/hw:) — inx /2] . (4.1a)
x = max(|¢|, 2kgT) ' (4.1b)

where X is a dimensionless coupling constant and A, is a cut-off frequency such that the
above expression is valid oply for € < Rw,. Note that this self-energy does not depend
upon the momentum variable. So we propose that, to obtain a better account of normal-state
behaviour, we include equation (4.1) in the self-energy of our propagator G(%, ) and write

Z(k, €) = Impl€) + Zscr(bi, €) 4.2)

where gep{fy, €) is given by equation (3.10). . This proposal amounts to perturbative
inclusion of a process causing superconducting fluctuations and a process leading to MFL
behaviour in the Fermi-liquid theory. If we now use equation (4.2) in the formula for
S4, i.e. equation (2.22), one notes that Zypr, enters only in the numerator and thus simply
contributes a factor multiplying the expression contained in equation (3.14). The final
resulting expression for Sy thus becomes

Sg =

rrsz (kBT) [1 — Pbln(?-kBT/ﬁmc)]z (4_3)

3e er / [1— (AL/anE)yInp)?’

In our earlier work [12] we had considered the effect of MFL correlations only and
found a fairly good quantitative agreement with thermopower data in some bismuth-based
superconductors. There we obtained the values of parameters like A, fiw, and ep using fits to
data on conductivity as well as on thermopower. Using typical values A = 2, hw, = 600 K
and ¢p = 40000 K, we exhibit a plot of equation (4.3) as curve (b) in figure 2. To make
the role of various terms explicit, we have also included the plot (as curve (¢) in figure 2)
in which only MFL correlations are included. Since a variety of data has been reported in
the literature, which ranges from exhibiting a rather broad hump to a sharp peak close to
T., we point out that a small variation in parameters like A and ke, can allow this range
of behaviour. Figure 3 shows plots showing three such choices. It should be remarked that
the value of the cut-off energy that is required to obtain the observed trends is 20% lower
than the authors of the MFL hypothesis expect it to be [20]. Further, it should be :gfed
that the magnitudes obtained in our formula are indeed of the right order, and the observed
magnitude variations can be easily accommodated with small variations in parameters like
€g, A and A ‘

5. Conclusions

We see from the plots of figures 2 and 3 that some of the main features of thermopower
data on a number of high-T; superconductors can be understood on the basis of the
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Figure 3. Three plots of the formula for thermepower variation wn.h temperature to show the

effect of variation of marginal Ferml-llqmd parameters A and feg: (a) A = 2, ko, = 600 K;
{) A = 4, ko = 600 K; {c) A = 2, o, = 1000 K. The other parameters are common;

¢p = 30000 K and m* = 2m.

formula derived in this paper. In spite of the simplifications and approximations made
in the derivation of the formula for Sy, we feel that the agreement with the experiments
‘at a quantitative level snggests that the superconducting fluctuations due to reduced
dimensionality and small coherence length do indeed play a role in the continuous vanishing
. of TEP at T, whereas the large departure from the Fermi-liquid-like behaviour at higher
temperatures seems o require a drastic proposal like the MFL hypothesis. This approach
can be refined and extended. In particular, in many compounds the thermopower changes
sign at higher temperatures. This is con_]ectured to be due to conductmn in two or more
bands. We propose to examine this aspect in future.
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